Nintendo Wii ® Nunchuck Controlled 5 DOF Robotic Arm

Dennis Sohn'

"Vanderbilt University School of Engineering, Mechanical Engineering

Wty
o

ME 3204 Mechatronics Final Report
Professors: Michael Goldfarb, Ph.D
Kenneth Frampton, Ph.D

ME 3204 Mechatronics
Vanderbilt University | Spring 2017
1

L. Introduction

Motivation

Robotic manipulators have become more and more prevalent in various sectors of
society in the past three decades. One particular field where robotics has grown most
prevalently is Medical Robotics. More and more health professionals have begun
transitioning from utilizing manual medical devices to taking advantage of the more
advanced and precise control medical robots that have been developed. As an aspiring
engineer who has had the opportunity to participate and contribute in research
concerning medical robotics in STORM Lab at Vanderbilt, I was inspired to create a
robotic manipulator that could have medical applications. Intuitive Surgical ®, a well
established and respected company in the field of medical robotics, have developed a
four arm surgical system named the DaVinci Surgical System ® (Fig. 1). The DaVinci
has allowed for surgeons to operate on patients with higher precision and in a
minimally invasive manner, allowing for smaller cuts, less bleeding, and quicker
recovery time. But along with innovation various projects in the biomedical
engineering arena focus on creating
effective, but also low cost application
devices in order to help societies of low
economic development with high health
risks and demands. My general
motivation behind medical robotics is to
help develop systems that can save

countless lives for those who would

otherwise not be able to afford the

medical care that is currently available. Figure 1: Intuitive Surgical’s DaVinci Surgical System ®

Utilizes a Four Arm System Controlled by a Medical
Doctor to Perform Operation
General Function

The WiiArm is a five degrees of freedom (DOF) arm which is controlled by a
commercial sensor controller called the Nintendo Wii Nunchuck. The user controls
the arm by manipulating the nunchuck’s different input sensors and controllers. By
doing so, the user can control 5 end effector behaviors: 1) Rotating the entire arm in
the xy-plane 2) Actuating the entire arm in the vertical plane 3) Actuating a section of
the arm in the vertical plane 4) Rotation of the end effector claw mechanism in the
axial direction of the arm 5) Actuation controlling the opening and closing of the end

effector claw mechanism.

ME 3204 Mechatronics
Vanderbilt University | Spring 2017
2

The nunchuck outputs three main sets of data, which are used to manipulate the arm:
1) Accelerometer data in the R Cartesian Plane 2) A joystick with data points in
XY-Cartesian cootdinate plane 3) “C” and “Z” button outputting a binary On/Off

response signal

The accelerometer and joystick coordinate points were used to control the translational
and rotational motions of the arm while the “c” and “z” buttons controlled the
opening an closing of the claw mechanism. This gave the user, who was operating the
nunchuck, full control of the WiiArm.

+z

+Z

Figure 2: Four Axis of Motor Rotation for the WitArm

II. System Description

Design: Hardware & Construction

A base support held the entire system, which was mounted onto it using 8 M2 5 x 14
screws and a base support piece and the stepper motor encasing. Both parts were rapid
prototyped and created using Autodesk Inventor Professional 2017 ® and fabricated
by the Stratsys 3D Printer.

ME 3204 Mechatronics
Vanderbilt University | Spring 2017
3

The NEMA 17 Stepper Motor, which is enclosed by the encasing piece was oriented
such that the motor shaft was pointed in the +Z axis. Two plates 60mm in diameter
with extruded holes positioned in the same position as the threaded holes on the face
of the stepper motor. The plates were laser cut from MDF wood and then attached to
the stepper. A third plate was laser cut with a hole in the center that had the projected
geometry of the stepper motor shaft. The stepper motor’s shaft is 4.5mm in diameter

with a cross-diagonal cut.

A second stepper motor was positioned normal to the axis of the first stepper motor
such that the motor shaft was parallel to the xy-coordinate plane. This stepper motor
was offset from the center axis of the first stepper motor by 11.5 mm such that the

second stepper motor’s shaft was centered to the first stepper motor.

The robotic arm consisted of two main joints limbs: a major arm and a minor arm. The
major arm (Fig. 2) included a hole on the proximal end with the stepper motor shaft
cross sectional projected geometry and a rectangular slot of dimensions (insert) for a
(insert) servo motor on the distal end. The servo motor was held in place using (insert)

SCIEws.

The minor arm (Fzg. 2) was attached to the major arm by way of the servo motor shaft
and attachment rotor piece. Due to limitations in maximum allowed torque, the minor
arm is much shorter than the major arm to reduce the perpendicular distance and force
and thus resultant torque acting on the servo motor shaft. At the distal end of the
minot arm, a second servo motor is attached with the motor shaft in the direction of

the y-axis of the minor arm.

At the distal tip of the arm is a 1) “Major Arm”
four-link claw grasping mechanism,
which is actuated by a third servo

motor. The claw was designed and

prototyped using Autodesk Inventor 2) “Minor Arm”

and fabricated by the Stratsys® 3D 3) “Claw Mechanism”
Printer. The claw was assembled
using an array of eight (specify)

screws, which were positioned at the

terminal ends of each the joints ‘
inside cylindrical clips, allowing for Rl
rotation.

Figure 2: WiiArm Components Assenbly

ME 3204 Mechatronics
Vanderbilt University | Spring 2017

4

Actuation Units

Two types of actuation units were used in the WiiArm. The first was a NEMA 17
Bipolar 40mm, 2 Amp, 4 Lead Stepper Motor (Fig. 3). Stepper motors operate by
drawing current for each phase, which allows the motor to bear a greater load or
torque compared to traditional DC Motors. Current control The NEMA 17 Stepper
motor was rated to draw 2A of current and take on a holding torque of 45N-cm. The
stepper motor moves by rotating in steps with a designated step angle. The NEMA 17
Stepper Motor has a Step Angle of 1.8 degrees, which translates into 200 steps for one
full revolution (1.8° X 200 Steps = 360°).

The Stepper motor was specifically chosen to actuate
the base of the arm because of its high torque
capabilities. The first stepper motor took on a high load
in the axial direction of the shaft as the entire arm rested
on it. The second stepper motor took on a high load in
perpendicular direction (torque) as a resultant of the

ascending and descending motion of the arm. A weaker

motor would not have had enough torque to withstand
the forces acting on it and would have limited the
WiiArm’s function movement.

Figure 3: NEM.A Stepper Motor

The second actuation unit was the Fitec® FS5103B Standard Servo Motor. This servo
motor operates based on pulse width signals given from the arduino. Servo Motor
Standard operates between a pulse width of 900 ms and
2100 ms where 900 ms scales to a position of -70° and
2100 ms scales to a position of +70°. 1500 ms centers
the position of the servo motor to 0°. These motors are
effective in lower torque actuation situations where
input data from a sensor such can be converted and
mapped to digital output data scaled for the servo motor
position. The Servo Motor Standard was rated for 6V

and could handle a torque of 2.5 kg-cm.
Figure 4: Fite™ FS5103B Servo Motor

ME 3204 Mechatronics
Vanderbilt University | Spring 2017
5

The digital input data from the Wii nunchuck, the accelerometer, joystick, and “c”/
“z” button values were scaled and mapped to match with the range and positioning of
the servomotors. This allowed for rotational motion of the smaller components of the
arm at a lower overall effective weight for a motor, which was important when
considering how the forces of weight would affect the torque of the stepper motors at
the base.

Crrcuitry

The WiiArm was controlled using an Arduino Uno® R3 Microcontroller and Arduino
software (Appendix). An 830 Point Soldetless Breadboard (Appendix.) was used to
construct the circuitry connecting the actuation units of the arm and the Arduino.

Electrical wire connectors were used to connect all components.

The Stepper Motors were controlled using an electrical element called the H-Bridge
(Fig. 6). The H-Bridge used for the WiitArm was a Texas
Instrument” L.293NE Quadruple Half-H Driver (Fig. 5).
The H-Bridge allowed for bipolar or bidirectional control
of the stepper motors using a series of voltages gates set to
“high” or “low”, which controls current flow and thus
dictates either a clockwise, counterclockwise, or neutral
step response from the motor. Four pins of the H-Bridge
connected to the Arduino digital output pin. In

correspondence, four output pins connected from the

H-Bridge circuit connected to the Stepper Motor.

Figure 5: T1 1.293NE H-Bridge

To microcont oller voltage sUpply Vin IC Power Supply, +5V Vi
To microcontroller outputs 1 and 2 To mictocontroller outputs 3 and 4
toggle switch
To motor supply Vi L U
[! 12en i " _[1 16 Pushbutton
4l PR _E. & e switch
2 e~ Pushbutton = a 14 —
z:z H Bridge Gx switch
i Py 4129313 L
2in 3in 10KQ 5 12 -
v 3sen Vi 6 1 Vi
— 7 10 I
- - Pushbutton _I 8 9 Pushbutton
Wotor switch switch
/ o,
7 g v 10KQ M:X:r - 10KQ
| :
{\ % O ¢ 4 supply toggle switch _I
C .2 =] - —

Figure 6: Circuit Schematic of TI 1.293NE H-Bridge

ME 3204 Mechatronics
Vanderbilt University | Spring 2017
6

Due to the stepper motor being rated at a high voltage and current, a power supply
source machine was used to power the stepper motors instead of the Arduino or 9V
battery. The power source allowed for voltage and current control in order to provide

the necessary voltage at a controlled current to prevent overheating of the H-Bridge.

The servo motors were rated at a 6V max V, for full power. Due to the high torques
acting on the motors, the servo’s max voltage needed to be taken advantage of. The
Arduino only supplied 5V, so a 9V battery and voltage divider was created to supply
6V to the servo motors. In order to acquire 6V from 9V, three 220 kQ resistors were
put in series to satisfy the following Nodal Analysis equation:

W6V _ 6V-0V
Rl R2

R2 — 220kQ +220kQ —
R1 220kQ

Each servo motor also connects to Ground and a voltage input which is connected to
the Arduino. The Arduino outputs voltage signals to control pulsewidth, which in turn

controls the servo’s rotor position.

fritzing

Figure 7: Overal] Visual Schematic of the Circuit Control of 2 Stepper Motors, 3 Servo Motors, Power Supply,
9V battery, WiiChuck Adapter, and Arduino Uno Microcontroller (created with Fritzing®Software)

ME 3204 Mechatronics
Vanderbilt University | Spring 2017
7

Sensors

The sensor used to control the entire arm was the Nintendo Wii ® nunchuck (Fig.
8a,b). The nunchuck consists of: 1) Accelerometer, which outputs gravitational force
data in the x, y, and z directions 2) Joystick, which is constructed with a curvilinear
potentiometer that varies resistance based on the position and outputs data in the x
and y direction 3) Two pushbuttons (“c” & “z) which output a binary high (1) or low
(0) depending on whether the button has been pushed or not.

“Joystick
z 4 Y “Accelerometer
Potentiometer

“«.n “n - v}
Joystick ¢’ &7 Circuit
Accelerometer

c N Axis ‘i

+y [}

(a))
Figure 8a, b: Anatomy of Wii Nunchuck: Accelerometer Circuit, Joystick, Push Buttons

Through simulation and gathering of data, the maximum and minimum output value
ranges were found for the accelerometer and joystick potentiometer. The Arduino was

able to acquire the output data from the nunchuck using an adapter circuit called the

wiichuck adapter (Fig 9).
| The wiichuck adapter
consists of four pins, two
for power (positive and
negative poles) and two
for data output (data and
clock). The Wii
Nunchucks encrypts data
using a protocol called I’C
(Inter-Integrated Circuit).

Figure 9: WiiChuck Adapter

Plugged into Wii Nunchuck

ME 3204 Mechatronics
Vanderbilt University | Spring 2017
8

Arduino Code Logic

Import Libraries
(#include .h files)

Initialize and Set Const.
Variables

Initialize INPUT and
OUTPUT Variables

Call Data Acquisition
Method*
(nunchuck_get_data())

Store Nunchuck Data
into Array
var = nunchuck_buffi]

If/else Conditional
Statements execution

Scale Nunchuck Data
to Motor Limits

Set Respective Variable Print Nunchuck Data
and execute function Accel_X/Y, X, Y, c,z

Figure 10: Flow Diagram of Ardunino Code Used to Control WiiArm

The Arduino software, which is rooted in the C-Language, is divided into two sections:
a Setup and a Loop. The setup (represented in blue in the flow diagram) is run once
and that is where variables are declared and initialized. The Loop (represented in red)

runs continuously over and over again until the program is stopped. This shown in
Fig. 10.

ME 3204 Mechatronics
Vanderbilt University | Spring 2017

9

Two header files from the Arduino library were imported, the wire.h file and stepper.h
file. These libraries contain predefined functions for the wire transmission functions
used in acquiring data from the nunchuck and stepper motor command functions

when controlling stepper motor output signals.

Variables used in the code were then declared and initialized for use in the program.
This also included variables that would serve as Input and Output control variables.
Once the initial variables were declared, the method nunchuck_get_data() was called to
acquire the nunchuck’s output data. nunchuck_get_data() used a programming
technique called the I2C protocol which communicates with the data and clock pins
from the nunchuck and converts it into readable digital signals. The data from the 12C

protocol was stored into an array called nunchuck_buff].

With the stored numerical values of the nunchuck output data into an array, the
variables were then called in a series of “if/else” conditional statements to execute
functions for the WiiArm’s movement. If the condition is satisfied, then the variable’s
value will get passed into the conditional statement where a function is executed such
as actuating the stepper or servo motor to perform a task. In this manner, the input
signals coming from the nunchuck control the output behavior of the mechanical arm.
If the condition is not satisfied, no action occurs and the code loops back to read in
data until the condition is satisfied. The data is also printed to a “Serial Monitot”,
where requested variables were printed and displayed such as the values for the
accelerometers, joystick, ¢ and z button, and which motors were turning. This

processed looped until the program was stopped.

III. Conclusion
Results

The WiiArm performed basic functionalities successfully, although not always
consistently and in a synchronous manner. Each actuation unit was tested individually
before the final assembly. Each stepper motor performed proper step rotation with the
input signals of “joystick right” (corresponding to a clockwise rotation) and “joystick
left” (corresponding to a counterclockwise rotation) as well as “joystick up”
(corresponding to clockwise rotation causing the entire arm to elevate) and “joystick

down” (corresponding to a counterclockwise rotation causing the entire arm to
descend).

ME 3204 Mechatronics
Vanderbilt University | Spring 2017
10

Each individual servo motor was also tested for functionality. The first servo
controlling the ascending and descending behavior of the minor arm and claw,
experienced the highest torque of the three servo motors as it took on the load of the
other two servo motors as well as the claw mechanism. The second servo controlling
the rotational orientation of the claw mechanism also performed with full
functionality. The third servo motor successfully actuated the gear system to open and

close the four-link claw mechanism.

When all of the components were put together, the response of the arm from the
input of the data given from the Wii nunchuck, was unstable and slow at various times.
It was noticed that the stepper motor’s response was delayed by almost a full 2 seconds
and the servo motor response varied from either immediate response to anywhere

between 1-2 second delay as well.

It was also observed that the stepper motor was very limited in functioning when the
load of the arm was applied as the H-Bridge max current capacity was only 0.6 A while
the stepper required about 2 A. Thus, the stepper motors were not able to intake the
current needed to successfully rotate the base of the arm. The servo motor systems,
although inconsistent at times in response, overall functioned very well, performing
their respective actuation functions. The minor arm ascended and descended with the
ascension and descension of the nunchuck, as well as rotating the orientation of the tip
with lateral rotation of the nunchuck, and most excitingly, the claw grasping
mechanism successfully worked, opening when the user pushed the “z” button and

closing when the user pushed the “c” button.

Summary

The Wii Nunchuck controlled robotic arm, overall, showed innovative potential. A
simple controller such as the popular video game console had the capability to control a
very sophisticated mechanical device with good precision. Range of motion and

functionality was successfully achieved, although not on a consistent basis.

In the future, two main components for improvement manifest from this prototype. The
first is replacing the current L293NE H-Bridge with a higher toleranced max current
H-Bridge such as the ROB-12589 Big Easy Driver, which will allow for more current to
be drawn by the stepper motors and allow full functionality in rotating, lifting, and

declining the arm. The only main drawback to using this new H-Bridge driver is cost as

ME 3204 Mechatronics
Vanderbilt University | Spring 2017
11

the Big Easy Driver costs $19.95 per driver compared to $3.90 for the L293NE.

However, for the sake of an optimally performing arm, a stronger driver is necessary.

The second change would involve the coding and microcontrol process of the system.
One of the problems encountered during the operation of the WiiArm was the
inconsistent response and behavior of the arm when processing the input signal data of
the Wii Nunchuck. The Wii nunchuck was continuously outputting 7 data points (3 from
the accelerometer, 2 from the joystick potentiometer, and 2 from the buttons). Along
with the 7 inputs, 6 response controls were also continuously being outputted at the
same by the Arduino. Because of the large amounts of data being processed
continuously, timing and processing issues may have arose causing delayed responses.
This problem may have been fixed by manipulating data storage in a more efficient way
through C-Language data architecture manipulation techniques or using a stronger

processing microcontroller.

Through constructing the first prototype of the WiiArm, the potential for further
application and enhancement was validated and with enough refinement, the future of
low cost robotic control could progressively move more and more towards video

game-like control.

ME 3204 Mechatronics
Vanderbilt University | Spring 2017
12

IV. Appendix A: Component Source

Part Name Price
Avrduino Uno $21.99
(acquired from Kit)
Base Mount Free
(found in recycling bin)
Mount Adjustment Piece Free
And Motor Encasing
(3D printed)
Nema 17 Stepper Motor $10.99/each
(Amagon.com)
830 Point Solderless Breadboard $5.95
(acquired from friends)
Jumper Wires $3.95 per
(adafruit.com) 40 wirves
Servo Motor Standard $8.J0
(acquired from kit and friends)
Screws, Nuts, and Washers Free
(acquired from Wond’ry)
WieiChuck Adapter $1.95
(acquirved from STORM Lab)
Nintendo Wiz ® Nunchuck $6.50
(acquired from home)
Laser Cut Arms and Plates Free

(Laser Cut in Olin)

Zip Ties Free
(acquired from Wond’ry)
Resistors Free
(acquived from kit)
9Volt Battery $J.99
(acquired from kit)

ME 3204 Mechatronics
Vanderbilt University | Spring 2017
13

Loctite® Glue and Hot Glue Free
(acquired from Wond’ry)
GW Insteke 2303 Powersupply $313.00
(acquirved from STORM Lab)
Total: $389.81
$15.89%

*excludes items acquired for free

V. Appendix B: Arduino Code

#include <Wire.h>
#include <Stepper.h>

//ISERVO MOTOR Setup

int servoPin1 = 2; //accel up/down
int servoPin2 = 3; //tip rotator

int servoPin3 = 4; //cz claw

int pw1 = 1500;
int pw2 = 1500;
int pw3 = 1500;

int pwmax = 2100;
int pwmin = 900;

int period = 20;

/ISTEPPER MOTOR 1 Setup

/Irotation

const int stepsPerRevolution1 = 100; // steps per revolution
/l initialize the stepper library on pins 10-13:

Stepper myStepper1(stepsPerRevolution1, 6, 7, 8, 9);

/ISTEPPER MOTOR 2 Setup
/lup/down

const int stepsPerRevolution2 = 100; // steps per revolution

/l initialize the stepper library on pins 10-13:
Stepper myStepper2(stepsPerRevolution2, 10, 11, 12, 13);

/INUNCHUCK Setup
static uint8_t nunchuck_buf[6]; // array to store nunchuck data,

s

ME 3204 Mechatronics
Vanderbilt University | Spring 2017
14

void setup()

{
Serial.begin(19200);

/ISERVO MOTOR SETUP:

pinMode(servoPin1, OUTPUT);

pinMode(servoPin2, OUTPUT);

pinMode(servoPin3, OUTPUT);

nunchuck_setpowerpins(); // use analog pins 2&3 as fake gnd & pwr
nunchuck_init(); // send the initilization

/ISTEPPER MOTOR SETUP
myStepper1.setSpeed(30); / set speed to 30 rpm
myStepper2.setSpeed(30);

}
T Ty

void loop()
{

nunchuck_get_data();

/I map nunchuk data to a servo data point

/lint x_axis = map(nunchuck_buf[0], 23, 222, 180, 0);
/lint y_axis = map(nunchuck_buf[1], 32, 231, 0, 180);
int x_axis = nunchuck_buf[0];

int y_axis = nunchuck_buf[1];

nunchuck_print_data(); //print data to serial monitor

static int i=0;
int joy_x_axis = nunchuck_buf[0];
int joy_y_axis = nunchuck_buf[1];

int accel_x_axis = nunchuck_buf[2];
int accel_y_axis = nunchuck_buf[3];
int accel_z_axis = nunchuck_buf{4];

int z_button = 0;
int c_button = 0;

s

/I C AND Z BUTTON DATA

if ((nunchuck_buf[5] >> 0) & 1)
z_button = 1;

if ((nunchuck_buf[5] >> 1) & 1)
c_button = 1;

// ACCELEROMETER DATA

if ((nunchuck_buf[5] >> 2) & 1)
accel_x_axis += 2;

if ((nunchuck_buf[5] >> 3) & 1)

ME 3204 Mechatronics
Vanderbilt University | Spring 2017
15

accel_x_axis += 1;

if ((nunchuck_buf[5] >>4) & 1)
accel_y_axis += 2;

if ((nunchuck_buf[5] >> 5) & 1)
accel_y_axis += 1;

if ((nunchuck_buf[5] >> 6) & 1)
accel_z_axis += 2;

if ((nunchuck_buf[5] >>7) & 1)
accel_z_axis += 1;

s

/IARM ROTATOR STEPPER (joystick x-axis)
/ICW

if (joy_x_axis < 110 && joy_x_axis > 30) {
myStepper1.step(stepsPerRevolution1);
}

/ICCW
1/ step one revolution in the other direction:

if (joy_x_axis < 230 && joy_x_axis > 140) {
myStepper1.step(-stepsPerRevolution1);
}

I
/IARM 1 STEPPER (joystick y-axis) UP/DOWN
/ICW

if (joy_y_axis < 110 && joy_y_axis > 30) {
myStepper2.step(stepsPerRevolution2);
}

/ICCW

if (joy_y_axis < 230 && joy_y_axis > 140) {
myStepper2.step(-stepsPerRevolution2);
}

s

/IARM 2 SERVO (accelerometer y-axis) UP/DOWN
int pw1 = map(accel_y_axis, 70, 200, pwmin, pwmax);

if((accel_y_axis >70 && accel_y_axis<110) || (accel_y_axis>140 && accel_y_axis<200)) {
digitalWrite(servoPin1, HIGH);
delayMicroseconds(pw1);

ME 3204 Mechatronics
Vanderbilt University | Spring 2017
16

digitalWrite(servoPin1, LOW);
delay(period - pw1/ 1000);
}

s

/IEND TIP ROTATOR (accelerometer x-axis)
int pw2 = map(accel_x_axis, 70, 186, pwmin, pwmax);

if((accel_x_axis >70 && accel_y_axis<100) || (accel_y_axis>130 && accel_y_axis<186)) {
digitalWrite(servoPin2, HIGH);
delayMicroseconds(pw2);

digitalWrite(servoPin2, LOW);
delay(period - pw2/ 1000);
}

s

/I CLAW OPEN/CLOSE (c/z button)
int gainVal = 150;
if (pw3 <pwmin){
pw3= pwmin;}

if (pw3 >pwmax){
pw3=pwmax;

}

if (pw3 <= pwmax && pw3 >=pwmin){
if (c_button ==1 && z_button ==0) {
pw3 = gainVal+pw3; }

else if (z_button == 1 && c_button ==0) {
pw3 = pw3- gainVal;}
}

digitalWrite(servoPin3, HIGH);
delayMicroseconds(pw3);

digitalWrite(servoPin3, LOW);
delay(period - pw3 / 1000);

I T T

/I NUNCHUCK FUNCTIONS

/I Uses port C (analog in) pins as power & ground for Nunchuck
static void nunchuck_setpowerpins()
{
#define pwrpin PORTC3
#define gndpin PORTC2
DDRC |= _BV(pwrpin) | _BV(gndpin);
PORTC &=~ _BV(gndpin);
PORTC |= _BV(pwrpin);
delay(100); // wait for things to stabilize

ME 3204 Mechatronics
Vanderbilt University | Spring 2017
17

// initialize the 12C system, join the 12C bus,

/I and tell the nunchuck we're talking to it

void nunchuck_init()

{

Wire.begin(); /I join i2c bus as master
Wire.beginTransmission(0x52); // transmit to device 0x52
Wire.write(0x40); /I sends memory address
Wire.write(0x00); /I sends sent a zero.
Wire.endTransmission(); /I stop transmitting

/I Send a request for data to the nunchuck
/I was "send_zero()"
void nunchuck_send_request()
{
Wire.beginTransmission(0x52); // transmit to device 0x52
Wire.write(0x00); // sends one byte
Wire.endTransmission(); /I stop transmitting

}

/I Receive data back from the nunchuck,
int nunchuck_get_data()

{

int cnt=0;

Wire.requestFrom (0x52, 6); // request data from nunchuck

while (Wire.available ()) {
/I receive byte as an integer
nunchuck_buf[cnt] = nunchuk_decode_byte(Wire.read());
cnt++,

}

nunchuck_send_request(); // send request for next data payload

/' If we recieved the 6 bytes, then go print them
if (cnt >=5) {
return 1; // success

}

return O; //failure

/I Print the input data we have received
/I accel data is 10 bits long

// so we read 8 bits, then we have to add
/l on the last 2 bits. Thatis why |

/I multiply them by 2 * 2

void nunchuck_print_data()
{
static int i=0;
int joy_x_axis = nunchuck_buf[0];
int joy_y_axis = nunchuck_buf[1];

int accel_x_axis = nunchuck_buf[2]; // * 2 * 2;
int accel_y_axis = nunchuck_buf[3]; // * 2 * 2;

int accel_z_axis = nunchuck_buf[4]; // * 2 * 2;

int z_button = 0;

ME 3204 Mechatronics
Vanderbilt University | Spring 2017
18

int c_button = 0;

/I byte nunchuck_buf[5] contains bits for z and c buttons
/I it also contains the least significant bits for the accelerometer data
/I check each bit of byte outbuf[5]

/I C AND Z BUTTON DATA

if ((nunchuck_buf[5] >> 0) & 1)
z_button = 1;

if ((nunchuck_buf[5] >> 1) & 1)
c_button = 1;

/I ACCELEROMETER DATA

if ((nunchuck_buf[5] >> 2) & 1)
accel_x_axis += 2;

if ((nunchuck_buf[5] >> 3) & 1)
accel_x_axis += 1;

if ((nunchuck_buf[5] >>4) & 1)
accel_y_axis += 2;

if ((nunchuck_buf[5] >> 5) & 1)
accel_y_axis += 1;

if ((nunchuck_buf[5] >> 6) & 1)
accel_z_axis += 2;

if ((nunchuck_buf[5] >>7) & 1)
accel_z_axis += 1;

/I PRINT VALUES

Serial.print(i,DEC);
Serial.print("\t");

Serial.print("joy x:");
Serial.print(joy_x_axis,DEC);
Serial.print(", y=");
Serial.print(joy_y_axis, DEC);
Serial.print(" \t");

Serial.print("acc x:");
Serial.print(accel_x_axis, DEC);
Serial.print(", y: ");
Serial.print(accel_y_axis, DEC);
Serial.print(", z: ");
Serial.print(accel_z_axis, DEC);
Serial.print("\t");

Serial.print("z:");
Serial.print(z_button, DEC);
Serial.print(", c: ");
Serial.print(c_button, DEC);

Serial.print("\r\n"); // newline
i++;

ME 3204 Mechatronics
Vanderbilt University | Spring 2017
19

VI. Appendix C: Datasheets and Drawings

ME 3204 Mechatronics
Vanderbilt University | Spring 2017
20

L
A
Y

ME 3204 Mechatronics
Vanderbilt University | Spring 2017
21

42MAX

23105 40MAX
| 3120.1 |
otus O AN = -
3 § g
4.520.1
/@/ O__
4-M3 ~
DEPTH %]
4.5MIN g
. 4/%
H%\ Harwin Connector i
2.54mm 4-PIN Black Housing
SPECIFICATION CONNEGTION BIPOLAR: TYPE OF CONNECTION
(EXTERN) MOTOR
VOTAGE(VOC) 2.20
AMPS/PHASE 2.00 PIN NO BIPOLAR LEADS WINDING
RESISTANGE/PHASE(Ohms)@25°C 1.10£10% ;
INDUCTANCE/PHASE(mH)@1KHz 2.60£20% AT BLK B i
HOLDING TORQUE(Nm)[lb-in] 0.45[3.98] 2 A — GRN A
STEP ANGLE() 1.80 3 B — RED B
STEP ACCURACY (NON-ACCUM) £5.00%
4 B — BLU B\
ROTOR INERTIA(g-cm?) 54,00
WEIGHT(Kg)[Ib] 0.30[0.66] FULL STEP 2 PHASE-Ex., BLK

TEMPERATURE RISE:MAX.80°C (MOTOR STANDSTILL;FOR 2PHASE ENERGIZED) WHEN FACING MOUNTING END (X)

AMBIENT TEMPERATURE -10°C~50°C[14°F~122°F] STEP| A B Al Bl

e

INSULATION RESISTANGE 100 Mohm (UNDER NORMAL TEMPERATURE AND HUMIDITY) LI I L N l’ T GRN
INSULATION CLASS B 130°C[266°F] il I I I
DIELECTRIC STRENGTH 500VAC FOR 1MIN.(BETWEEN THE MOTOR COILS AND THE MOTOR CASE) BAl=]E] 5| & cw
1 o RED BLU
AMBIENT HUMIDITY MAX.85%(NO CONDENSATION) h *
APVD
STEPPERONLINES £ STEFRER MOTOR
= —
_
Motors&Electronics il oRy 17HS16-2004S
SCALE SIGNATURE DATE

FeeTech FS5103B - Standard Servo

Specifications

Modulation: Analog
Thorees 4.8v: 41.70 oz-?n (3.00 kg-cm)
6.0V: 44.50 oz-in (3.20 kg-cm)
Spesd: S 0.6 B0
Weight: 1.27 0z (36.0 g)
Length: 1.61 in (40.8 mm)
Dimensions: Width: 0.79 in (20.1 mm)
Height: 1.50 in (38.0 mm)
Motor Type: Brushed Brand: Fedlecr
Gear Type: Plastic Product Number:
Rotation/Support: Dual Bearings Typical Price:
Rotational Range: 120° Compare: add+
Pulse Cycle:
Pulse Width: 900-2100 ps

ME 3204 Mechatronics
Vanderbilt University | Spring 2017
22

J‘:’ TexAs
INSTRUMENTS

www.ti.com

L293,L293D

SLRS008D —SEPTEMBER 1986—REVISED JANUARY 2016

5 Pin Configuration and Functions

NE Package
16-Pin PDIP
Top View
U
1,2EN [1 16]Vcc1
1A |2 15[] 4A
1Y |3 14] 4Y
HEAT SINK AND g 13]] HEAT SINK AND
GROUND s 12[] GROUND
2Y |6 113y
2afl7 10f]3A
Veez [[8 9] 3,4EN
Pin Functions
PIN
TYPE DESCRIPTION
NAME NO.
1,2EN) | Enable driver channels 1 and 2 (active high input)
<1:4>A 2,7,10,15 | Driver inputs, noninverting
<1:4>Y 3,6,11,14 o Driver outputs
3,4EN 9 | Enable driver channels 3 and 4 (active high input)
GROUND 4.5.12,13 _ E;:gc‘iag;ound and heat sink pin. Connect to printed-circuit-board ground plane with multiple
Vee 16 — 5-V supply for internal logic translation
Veez — Power VCC for drivers 4.5 V to 36 V
*L‘iTEXAS
INSTRUMENTS
L293,L293D

SLRS008D —SEPTEMBER 1986—REVISED JANUARY 2016

www.ti.com

6 Specifications

6.1 Absolute Maximum Ratings
over operating free-air temperature range (unless otherwise noted)")

MIN MAX UNIT
Supply voltage, Veet @ 36 v
Output supply voltage, Vece 36 \
Input voltage, V| T 4
Output voltage, Vo -3 Vegz +3 Vv
Peak output current, o (nonrepetitive, t = 5 ms): L293 -2 2 A
Peak output current, |o (nonrepetitive, t = 100 ps): L293D -1.2 1.2 A
Continuous output current, lp: L293 -1 1 A
Continuous output current, lp: L293D —600 600 mA
Maximum junction temperature, T 150 0
Storage temperature, Tqg -85 150 °C

(1) Stresses beyond these listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings
i under
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

only, which do not imply functional operation of the device at these or any other

(2

6.2 ESD Ratings

All voltage values are with respect to the network ground terminal.

beyond those

VALUE UNIT
v Electrostatic \ Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(") +2000 "
(ESD) discharge | Charged-device model (CDM), per JEDEG specification JESD22-C1012) +1000
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.
6.3 Recommended Operating Conditions
aver operating free-air temperature range (unless otherwise noted)
MIN NOM MAX | UNIT
Vi 45 7
Supply voltage ce1 v
Vece Vee 36
Vg1 7V 23 Vi 4
Vi High-level input voltage <ot e
Veci 27V 23 7 \Y
Vi Low-level output voltage -0.30 1.5 \
Ta Operating free-air temperature 0 70 '

(1) The algebraic convention, in which the least positive (most negative) designated minimum, is used in this data sheet for logic voltage

levels.

ME 3204 Mechatronics

Vanderbilt Universit

| Spring 2017
23

